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1. Introduction 

2. Nf=8 QCD result 
• Flavor singlet scalar (σ) spectrum 

(composite Higgs) 

• Baryon Dark matter   

• Flavor singlet pseudo scalar (η’) mass 

3. Summary



“Higgs boson” 
• Higgs like particle (125 GeV)                                      has been 

found at LHC. 

• Consistent with the Standard Model Higgs.  
• But true nature is so far unknown. 

• Many candidates for beyond the SM. 
one interesting possibility is 
Dynamical breaking of electroweak symmetry 
-> composite Higgs 

– (walking) technicolor  
• “Higgs” = dilaton (pNGB) due to breaking of the approximate 

scale invariance 
• 750 GeV diphoton resonance may suggest strong dynamics? (η-like particle?) 

ATLAS & CMS 2012



�(µ): running gauge coupling

Many-flavor QCD:  benchmark test of walking dynamics

– typical QCD like theory: MHad>>Fπ  (ex.: QCD: mρ/fπ~8) 
• Naive TC: MHad > 1,000 GeV 
• 0++ is a special case: pseudo Nambu-Goldstone boson of scale inv. 
➡ is it really so ?

Asymptotic non-free

Conformal window

QCD-like

: Number of flavor

Walking technicolor



�(µ): running gauge coupling

Many-flavor QCD:  benchmark test of walking dynamics

– typical QCD like theory: MHad>>Fπ  (ex.: QCD: mρ/fπ~8) 
• Naive TC: MHad > 1,000 GeV 
• 0++ is a special case: pseudo Nambu-Goldstone boson of scale inv. 
➡ is it really so ?

Asymptotic non-free

Conformal window

QCD-like

: Number of flavor

Walking technicolor

Lattice!! 



Many-flavor QCD on the Lattice 
                
[LatKMI collaboration] 
Yasumichi Aoki, Tatsumi Aoyama, Ed Bennett,          
Masafumi Kurachi, Toshihide Maskawa, Kei-ichi Nagai, 
Kohtaroh Miura, HO, Enrico Rinaldi, Akihiro Shibata, 
KoichiYamawaki, TakeshiYamazaki



LatKMI project : Many-flavor QCD 

Status (lattice):  
 Nf=16: likely conformal  
 Nf=12: controversial, probably conformal?  
 Nf=8: controversial, our study suggests walking behavior? 
 Nf=4: chiral broken and enhancement of chiral condensate 

Systematic study of flavor dependence  
in many flavor QCD (Nf =4, 8, 12)  
using common setup of the lattice simulation

Nf=8 is good candidates of walking (near-conformal) 
technicolor model.



Simulation setup

• SU(3), Nf=8  

• HISQ (staggered) fermion 
and tree level Symanzik gauge action 
Volume (= L^3 x T) 
• L =24, T=32 
• L =30, T=40 
• L =36, T=48 
• L =42, T=56 
Bare coupling constant (                 ) 
• beta=3.8 

bare quark mass 
• mf= 0.012-0.06,  
     (5 masses) 

•  high statistics (more than 2,000 configurations) 

• We use a noise reduction technique for disconnected correlator. 
(use of Ward-Takahashi identity[Kilcup-Sharpe, ’87, Venkataraman-Kilcup ’97] ) 

mf L3 × T Ncf [Nst] mσ Lmσ

0.012 423×56 2300[2] 0.151(15)( 0
25) 6.3(6)( 0

1.1)

0.015 363×48 5400[2] 0.162(23)( 0
73) 5.8(8)( 0

2.6)

0.02 363×48 5000[1] 0.190(17)(39
0) 6.8(6)(1.4

0)

0.02 303×40 8000[1] 0.201(21)( 0
60) 6.0(6)( 0

1.8)

0.03 303×40 16500[1] 0.282(27)(24
0) 8.5(8)(70)

0.03 243×32 36000[2] 0.276(15)(60) 6.6(4)(10)

0.04 303×40 12900[3] 0.365(43)(17
0) 11.0(1.3)(0.5

0)

0.04 243×32 50000[2] 0.322(19)(80) 7.7(5)(20)

0.04 183×24 9000[1] 0.228(30)( 0
16) 4.1(5)(03)

0.06 243×32 18000[1] 0.46(7)(12
0) 11.0(1.7)(2.8

0)

0.06 183×24 9000[1] 0.386(77)(12
0) 7.0(1.4)(20)

TABLE II. Simulation parameters for Nf = 8 QCD at β = 3.8. Ncf(Nst) is the total number

of gauge configurations (Markov chain streams). The second error of mσ is a systematic error

coming from the fit range. The data with (†) and (∗) indicate a new result, and an update from

the previous result [LatKMI, PRD(R), 2014], respectively.
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OS(t) � �̄i�i(t), D(t) = �OS(t)OS(0)� � �OS(t)��OS(0)�

Flavor singlet scalar from fermion bilinear operator

Staggered fermion case  
• Scalar interpolating operator can couple to two states of  

• 0+(non-singlet scalar) : 
• 0-(scPion)                   :  

• Flavor singlet scalar can be evaluated with disconnected diagram.

ψ3 ψ2 ψ1

Λ3

LMρ

mf < mref
f < mf

mref
f < mf

α = 1

Cσ(t) = ⟨
∑Nf

i ψ̄iψi(t)
∑Nf

j ψ̄jψj(0)⟩ = Nf (−C(t) + NfD(t))

OF (t) ≡ ψ̄iψi(t), D(t) = ⟨OF (t)OF (0)⟩ − ⟨OF (t)⟩⟨OF (0)⟩

C±(2t) ≡ 2C(2t)±C(2t + 1)±C(2t − 1)

C+(2t) = 2C(2t) + C(2t + 1) + C(2t − 1)

(1 ⊗ 1) & (γ4γ5 ⊗ ξ4ξ5)

OF (t) =

Nf∑

i

ψ̄iψi(t)

C(2t)+ → a0 (continuum limit)
C(2t)− → scPion (continuum limit)

D(t) = ⟨ψ̄ψ(t)ψ̄ψ(0)⟩ − ⟨ψ̄ψ(t)⟩⟨ψ̄ψ(0)⟩

Cσ(2t) = −C+(2t) + 2D+(2t)
dfdf

0+(a0) :C+(2t) = 2C(2t) + C(2t + 1) + C(2t − 1) (18)

0−(scPion) :C−(2t) = 2C(2t) − C(2t + 1) − C(2t − 1) (19)

0+(σ) :Cσ(2t) = −C+(2t) + 3D+(2t) (20)

0+ :3D+(2t) (21)

0+(a0) : C+(2t)
0−(scPion) : C−(2t)
0+(σ) : Cσ(2t) = −C+(2t) + 3D+(2t)

9

(8 flavor) = 2 × (one staggered fermion)

(1 ⊗ 1) & (γ4γ5 ⊗ ξ4ξ5)

OF (t) =

Nf∑

i

ψ̄iψi(t)

Dφ(x) = η(x0), ⟨η(x)η†(y)⟩ = δx,y

C(2t)+ → a0 (continuum limit)
C(2t)− → scPion (continuum limit)

D(t) = ⟨ψ̄ψ(t)ψ̄ψ(0)⟩ − ⟨ψ̄ψ(t)⟩⟨ψ̄ψ(0)⟩

a
D−1(x, y) = ⟨η†(x)φ(y)⟩
D−1(x, y) = ⟨mfφ(x)φ†(y)⟩

Cσ(2t) = −C+(2t) + 2D+(2t)
dfdf

0+(a0) :C+(2t) = 2C(2t) + C(2t + 1) + C(2t − 1) (18)

0−(scPion) :C−(2t) = 2C(2t) − C(2t + 1) − C(2t − 1) (19)

0+(σ) :Cσ(2t) = −C+(2t) + 2D+(2t) (20)

0+ :2D+(2t) (21)

dfdf

0+(a0) :C+(2t) = 2C(2t) + C(2t + 1) + C(2t − 1) (22)

0−(scPion) :C−(2t) = 2C(2t) − C(2t + 1) − C(2t − 1) (23)

0+(σ) :Cσ(2t) = −C+(2t) + 3D+(2t) (24)

0+ :3D+(2t) (25)

0+(a0) : C+(2t)
0−(scPion) : C−(2t)
0+(σ) : Cσ(2t) = −C+(2t) + 3D+(2t)
0+ : 3D+(2t)
C−(2t) = C−(2t)
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(1 ⊗ 1) & (γ4γ5 ⊗ ξ4ξ5)
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⎛

⎜⎝
SU(NTC)

G3

G2

G1

⎞

⎟⎠

const · · · c0

ξ
(13)

HS · · · c1Lmf
1/(1+γ)

ξ
(14)

correction · · · c2Lmf
α

ξ
(15)

(16)

⎛

⎜⎜⎝

Q
ψ3

ψ2

ψ1

⎞

⎟⎟⎠ (17)

Q

ψ3 ψ2 ψ1

Λ3

LMρ

mf < mref
f < mf

mref
f < mf

α = 1

Cσ(t) = ⟨
∑Nf

i ψ̄iψi(t)
∑Nf

j ψ̄jψj(0)⟩ = Nf (−C(t) + NfD(t))

OF (t) ≡ ψ̄iψi(t), D(t) = ⟨OF (t)OF (0)⟩ − ⟨OF (t)⟩⟨OF (0)⟩

C±(2t) ≡ 2C(2t)±C(2t + 1)±C(2t − 1)

C+(2t) = 2C(2t) + C(2t + 1) + C(2t − 1)
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Many-flavor QCD highlight: Nf=8 QCD mass spectra

Mρ > Mπ ~ Mσ (outer error : both statistical and systematic errors added.) 
Nf=8 QCD is in sharp contrast to the real-life QCD  
(right figure: Nf=2 lattice QCD result)

(c.f. LatHC Collab. (’14), Hietanen et.al. (’14), Athenodorou et.al. (’15)).
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c.f. Nf=2 lattice QCD result 
[T. Kunihiro,et al.,  
SCALAR Collaboration, 2003]
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Nf=8 QCD is in sharp contrast to the real-life QCD  
(right figure: Nf=2 lattice QCD result)
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Mσ for Nf=8, beta=3.8 
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FIG. 18. Pion mass dependence of the mass of the flavor-singlet scalar mσ. Other hadron masses

of NG pion mπ and vector meson mass are also shown. Outer error represents the statistical and

systematic uncertainties added in quadrature, while inner error is only statistical. Results of the

chiral extrapolation by the DChPT are plotted by the solid line and full circle. Linear fit in mf is

also plotted by the dashed curve and full square.

mσ = c0m
1/(1+γ)
f , also works in the smaller mass region due to sizable error. The conformal

fit gives a χ2/dof = 0.60, and γ = 0.47(33)( 9
80). Accordingly, an interesting property that

both the fits of the (D)ChPT and hyperscaling with a large mass anomalous dimension

work in an appropriate mass region can be seen in mσ as well as other hadron spectra. It is

quite different from the usual QCD and could be a signal of the walking gauge theory. An

important future direction is to obtain a precise value of mσ in the chiral limit which will be

useful to study if this theory really possesses a desired walking behavior, and reproduce the

Higgs boson with 125 GeV mass. For this purpose, we need more and more data at lighter

fermion mass region with larger volumes.

31

c0 =   0.063(30)(+4/-142)

d0 =  −0.0028(98)(+36/-313 ) 

though it is too far, so far 

• 2 ways: 
• naive linear     mσ=c0+c1mf 
• dilaton ChPT  mσ2=d0+d1mπ2                     

differ only at higher order 

• possibility to have ~125GeV Higgs  

(We need to simulate lighter fermion mass region for precision determination)

• Fit result: 

σ(Flavor singlet scalar) ~ (Techni) dilaton [Composite Higgs]

m�

F�/
�

2
= 3.0(+3.0

�8.6)In the chiral limit



Technibaryon Dark Matter 



Technibaryon  

• The lightest baryon is stable due to the technibaryon 
number conservation  

• Good candidate of the Dark matter (DM) 

• Boson or fermion? (depend on the #TC) 
      our case: DM is fermion (#TC=3). 

• Direct detection of the dark matter is possible. 



DM effective theory

Technibaryon(B) interacts with quark(q), gluon in standard model

One of the dominant contributions in spin-independent interactions 
comes from the microscopic Higgs (technidilaton σ) mediated process  
(below diagram)

Technibaryon-scalar effective 
coupling

nucleon-scalar effective coupling

Leff = cB̄Bq̄q + cB̄BGa
µ�Gaµ� + 1

M B̄i�µ��BOµ� + · · ·

Nucleon Nucleon 

�

B : DMB : DM

yB̄B�

yn̄n�

How do we calculate the scalar-technibaryon coupling (yBBσ) ?



(Techni)baryon Chiral perturbation theory 

leading order of BChPT
Construction of the meson–baryon Lagrangian (3)

• chiral vielbein (axial vector)

uµ = i
(

u†(∂µ − i rµ)u − u(∂µ − i lµ)u†)

transforms according to

uµ "−→ KuµK†

• finally, rewrite quark mass term χ = 2B(s + i p) = 2BM + . . .

χ+ = u†χu† + uχ†u

such that
χ+ "−→ Kχ+K†

⇒ everything transforms in the same way
• power counting: Γµ, uµ = O(p) , χ+ = O(p2)

Baryon Chiral Perturbation Theory – p. 9

L = B̄(i�µ�µ �mB + gA

2 �5�µuµ)B

U = u2 = e2�i/F�
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L = B̄(i�µ�µ �mB + gA

2 �5�µuµ)B

U = u2 = e2�i/F�

Invariant under the scale transformation

c.f. Pion ChPT with dilaton  Ref.[Matsuzaki-Yamawaki ‘13] 

L = F 2
�
2 (�µ�)2 + F 2

�
4 �2tr[�µU†�µU ] + · · ·

�U = x���U, �� = (1 + x���)�, �B = (3
2 + x���)B,

L = B̄(i�µ�µ � e�/F�mB + gA

2 �5�µuµ)B

� = e�/F�

with dilaton



(Techni)baryon Chiral perturbation theory 

leading order of BChPT 
Construction of the meson–baryon Lagrangian (3)

• chiral vielbein (axial vector)

uµ = i
(

u†(∂µ − i rµ)u − u(∂µ − i lµ)u†)

transforms according to

uµ "−→ KuµK†

• finally, rewrite quark mass term χ = 2B(s + i p) = 2BM + . . .

χ+ = u†χu† + uχ†u

such that
χ+ "−→ Kχ+K†

⇒ everything transforms in the same way
• power counting: Γµ, uµ = O(p) , χ+ = O(p2)

Baryon Chiral Perturbation Theory – p. 9

L = B̄(i�µ�µ �mB + gA

2 �5�µuµ)B

U = u2 = e2�i/F�

L = B̄(i�µ�µ � e�/F�mB + gA
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with dilaton

The dilaton-baryon effective coupling (leading order) is uniquely determined as 

yB̄B� = mB/F�

(F� · · ·Dilaton decay constant)



�SI(�, N) = M2
R

� (Zfp + (A� Z)fn)2

DM Direct detection 

�

Table 1: Mass fractions. These values are based on the lattice QCD simulations [12, 13].

Proton Neutron

f
(p)
Tu

0.019(5) f
(n)
Tu

0.013(3)

f
(p)
Td

0.027(6) f
(n)
Td

0.040(9)

f
(p)
Ts

0.009(22) f
(n)
Ts

0.009(22)

or lighter than the top mass, one should integrate top quark as well so that the e↵ective
theoretical approach is appropriate.2

Note that we include ↵s/⇡ to the definition of the gluon scalar-type operator Og
S. We

discuss the meaning in the next subsection.

2.2 Nucleon matrix elements

As discussed in Introduction, we need the nucleon matrix elements of the e↵ective opera-
tors to evaluate the WIMP-nucleon e↵ective coupling. These operators are classified into
three types in terms of the Lorentz transformation properties of the quark bilinear parts
in the operators; the scalar-type operators (Oq

S, Og
S), the axial-vector operator (Oq

AV ), and
the twist-2-type operators (Oq

Ti
, Og

Ti
). Since these operators do not mix with each other

under the renormalization group (RG) flow, we are allowed to consider them separately.
As for the scalar-type quark operators Oq

S, we use the results from the lattice QCD
simulations. The expectation values of the scalar bilinear operators of light quarks be-
tween the nucleon states at rest, |Ni (N = p, n), are parametrized as

f
(N)
Tq

⌘ hN |mq q̄q|Ni/mN , (4)

which are called the mass fractions. These values are shown in Table 1. Here, mN is the
nucleon mass. They are taken from Ref. [11], in which the mass fractions are computed
by using the results from Refs. [12, 13].

The nucleon matrix element of Og
S is, on the other hand, evaluated with the trace

anomaly of the energy-momentum tensor [14]. For Nf = 3 quark flavors, the trace of the
energy-momentum tensor in QCD is given as

⇥µ
µ = �9

8

↵s

⇡
GA

µ⌫G
Aµ⌫ +

X

q=u,d,s

mqqq , (5)

up to the leading order in ↵s. The relation beyond the leading order in ↵s is also readily
obtained from the trace-anomaly formula. By evaluating the operator (5) in the nucleon

2In Ref. [10], such a situation is discussed where the exchanged particle has a similar mass to the
b-quark mass. In this case, of course, b-quark (also top quark) should be simultaneously integrated out
when the e↵ective theory is formulated.

4

Lattice calculation for both nucleon and technibaryon interactions 

g�ff

ghSM ff
=

(3� ��)vEW

F�
Note: Yukawa coupling is different from the SM : 

Nucleon matrix element non-perturbatively determined by lattice QCD calculation

Nucleon sigma term in QCD

B B 

Nucleon Nucleon

Spin-independent cross section with nucleus

f(n,p) =
mB�
2m2

�

yB̄B�

F�
(3� ��)(

�

q=u,d,s

f (n,p)
Tq

+
2
9
f (n,p)

TG
)



How to calculate Dilaton decay constant? 



It is important to investigate the decay constant of the flavor 
singlet scalar as well as mass, which is useful to study LHC 
phenomena; the techni-dilaton decay constant governs all the 
scale of couplings between Higgs and other SM particles.

Dilaton decay constant

Dilaton effective theory analysis [S. Matsuzaki, K. Yamawaki, PRD86, 039525(2012)]

z, w

z, w
σ (dilaton)

g
Fσ: dilaton decay constant

b, τ, …

b, τ, …

g�ff
g�ff

ghSM ff
=

(3� ��)vEW

F�
σ

g�WW

ghSM WW
=

vEW

F�



Two possible decay constants for σ (Fσ and Fs)

1. Fσ: Dilaton decay constant  

Dµ : dilatation current can couple to the state of σ.

Partially conserved dilatation current relation (PCDC): 

�0|Dµ(x)|�; p� = iF�pµe�ipx

�0|�µDµ(0)|�; 0� = F�m2
�

2.  Fs :scalar decay constant 

O(x) =
NF�

i=1

�̄i�i(x)We use scalar density operator   

which can also couple to the state of σ. 
We denote this matrix element as scalar decay constant 

(Fs : RG-invariant quantity) 

difficult to calculate on the lattice 

not so difficult



scalar decay constant from 2pt flavor singlet scalar correlator

NF: number of flavors  
V: L^3 
A: amplitude

What is relation between Fs and Fσ? 
We use a relation in the continuum theory obtained by 
the WT-identity for dilatation transformation

(in the dilaton pole dominance approximation)
[Ref: Technidilaton (Bando, Matumoto, Yamawaki, PLB 178, 308-312)]

��̄� = 3� �m (scale dimension)
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c.f. Another estimate via the scalar mass in the dilaton ChPT (DChPT). 
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A are the total number of the protons (p) and neutrons (n) in the nucleus. The
parameter f(n,p) is defined as f(n,p) = mN√

2m2
σ

yB̄Bσ
Fσ

(3−γ)
(∑

q=u,d,s f (n,p)
Tq

+ 2
9f (n,p)

TG

)
,

where f (n,p)
Tq

is the nucleon σ-term of the light quarks (q = u, d, s), and f (n,p)
TG

is that
of the heavy quarksd. Thus lattice calculations are used in the technicolor theory as
well as in QCD theory to obtain non-perturbative information about DM physics.

Here we show our numerical results of the DM cross sectione. We use the lattice
results of the dilaton decay constant (Fσ) obtained from the previous section and
baryon mass, while the scalar mass mσ is fixed to its experimental value (125 GeV)
in this analysis. We use the values in9 for f (n,p)

Tq
. To set the scale, we use the

relation
√

Nf/2Fπ/
√

2 = 246 GeV. We again use the Fπ in the chiral limit. To
compare it with experiment, we use the cross section per nucleon (σ0) instead of
σSI . The result is shown in Fig. 3. According to DM direct detection experimentsf ,
our values for σ0 are excluded, so that it may be difficult to explain the existence
of DM as a techni-baryon. However we note that there exist other contributions
to the DM cross section, e.g. gauge boson mediated interaction, and higher order
terms, which might affect the DM cross section. Calculation of these contributions
on the lattice is left for future investigations.

1000 10000
mB [GeV]

1e-42

1e-40

1e-38

1e-36
σ 0

 [c
m

2 ]

Fig. 3. σ0 [cm2] as a function of mB [GeV]. The results for mf = 0.030, 0.020, 0.015, 0.012,
and the chiral limit from upper-right to lower-left. Both the statistical and systematic errors are
included. Experimentally allowed region is below the plotted window.

5. Summary

The scalar mass and decay constant are very important parameters to probe a
technicolor signature at the LHC. Based on the lattice theory, we derived a rela-
tion between the scalar decay constant and the (flavor-singlet) scalar correlation
functions. Our numerical result shows that the signal of the decay constant is as
good as that of the mass. Although the accuracy of our result is not enough to
precisely extrapolate towards the chiral limit, we obtained a rough estimate of the

dIn general, techni-fermions can be charged under the SM color, so there may exist additional
contributions to the nucleon matrix elements from the techni-fermions. In this analysis, we omit
these contributions for simplicity.
eA similar analysis on the lattice has been performed for a different composite DM model based
on strong dynamics11.
fFor a recent experiment, see e.g.12.
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[Ref: S. LUX experiment Phys.Rev.Lett. 112 (2014) 091303]
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FIG. 5. The LUX 90% confidence limit on the spin-
independent elastic WIMP-nucleon cross section (blue),
together with the ±1� variation from repeated trials, where
trials fluctuating below the expected number of events for
zero BG are forced to 2.3 (blue shaded). We also show
Edelweiss II [44] (dark yellow line), CDMS II [45] (green
line), ZEPLIN-III [46] (magenta line), CDMSlite [47] (dark
green line), XENON10 S2-only [20] (brown line), SIMPLE [48]
(light blue line) and XENON100 100 live-day [49] (orange
line), and 225 live-day [50] (red line) results. The inset
(same axis units) also shows the regions measured from annual
modulation in CoGeNT [51] (light red, shaded), along with
exclusion limits from low threshold re-analysis of CDMS II
data [52] (upper green line), 95% allowed region from
CDMS II silicon detectors [53] (green shaded) and centroid
(green x), 90% allowed region from CRESST II [54] (yellow
shaded) and DAMA/LIBRA allowed region [55] interpreted
by [56] (grey shaded). Results sourced from DMTools [57].

upper limit on the number of expected signal events
ranges, over WIMP masses, from 2.4 to 5.3. A variation
of one standard deviation in detection e�ciency shifts
the limit by an average of only 5%. The systematic
uncertainty in the position of the NR band was estimated
by averaging the di↵erence between the centroids of
simulated and observed AmBe data in log(S2b/S1). This
yielded an uncertainty of 0.044 in the centroid, which
propagates to a maximum uncertainty of 25% in the high
mass limit.

The 90% upper C. L. cross sections for spin-
independent WIMP models are thus shown in Fig. 5
with a minimum cross section of 7.6⇥10�46 cm2 for a
WIMP mass of 33 GeV/c2. This represents a significant
improvement over the sensitivities of earlier searches [45,
46, 50, 51]. The low energy threshold of LUX permits
direct testing of low mass WIMP hypotheses where
there are potential hints of signal [45, 51, 54, 55].
These results do not support such hypotheses based
on spin-independent isospin-invariant WIMP-nucleon
couplings and conventional astrophysical assumptions

for the WIMP halo, even when using a conservative
interpretation of the existing low-energy nuclear recoil
calibration data for xenon detectors.

LUX will continue operations at SURF during 2014
and 2015. Further engineering and calibration studies
will establish the optimal parameters for detector
operations, with potential improvements in applied
electric fields, increased calibration statistics, decaying
backgrounds and an instrumented water tank veto
further enhancing the sensitivity of the experiment.
Subsequently, we will complete the ultimate goal of
conducting a blinded 300 live-day WIMP search further
improving sensitivity to explore significant new regions
of WIMP parameter space.
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c.f. recent experiment 

Our values for σ0 are experimentally excluded,  
so that it may be difficult to explain the existence of DM as a techni-baryon.



Pseudo-scalar (η’) channel 
preliminary



Flavor singlet pseudo-scalar (η’) mass

��̄�5�(t)|�̄�5�(0)�
Fermionic correlator is very noisy due to the pion contamination 

C(t) = A�e�m�t

D(t) = �A�e�m�t + B��e�m�� t

However gluonic correlator with quantum number (0-+) 
does not (directly) couple to flavored pseudo scalar.

(m� < m��)

(in the continuum theory)



We consider a point-point correlation function which is

Topological charge density correlator

[Ref: Shuryak and Verbaarschot ’95, Rosenzweig ,et al. ’80, Di Vecchia and 
Veneziano, ’80]

|x-y| = r
K1 … modified Bessel function

Flavor singlet pseudo-scalar (η’) mass

q(x) = cTr[Fµ⌫
˜

F

µ⌫
(x)]

�q(x)q(y)� =
Cm��

r
K1(m��r)

(gluonic operator)
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Improvement : Gradient flow of link variables 

Ref: [Luscher, Luscher & Weise, 2011]

Topological charge density operator 

@⌧Aµ(⌧, x) = �@SYM

@Aµ

Smeared length d ⇠
p
8⌧

<q(x)q(y)>

r =｜x−y｜

⌧ = 0.99

This region will be used.

r is four dimensional distance.
More statistics than usual zero-momentum time correlation function



0 2 4 6 8 10 12 14
1e-06

1e-05

0.0001

0.001

0.01

0.1

1
τ=0.00
τ=0.30
τ=0.60
τ=1.20

Gradient flow reduces the gauge noise

ー<q(x)q(y)>

Example: Nf=8, L=36, mf=0.015, #conf=360 (7200 trj.)

black : τ=0 (without  gradient flow)

r =｜x−y｜



2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

τ=0.00

local (effective) mass from range [r, r+0.5]

Nf=8, L=36, mf=0.015

r =｜x−y｜



2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

τ=0.30

local (effective) mass from range [r, r+0.5]

Nf=8, L=36, mf=0.015

r =｜x−y｜



2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

τ=0.60

local (effective) mass from range [r, r+0.5]

Nf=8, L=36, mf=0.015

r =｜x−y｜



2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

τ=0.75

local (effective) mass from range [r, r+0.5]

Nf=8, L=36, mf=0.015

r =｜x−y｜



2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

τ=0.90

local (effective) mass from range [r, r+0.5]

Nf=8, L=36, mf=0.015

r =｜x−y｜



2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

τ=1.05

local (effective) mass from range [r, r+0.5]

Nf=8, L=36, mf=0.015

r =｜x−y｜



2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

τ=1.20

local (effective) mass from range [r, r+0.5]

Nf=8, L=36, mf=0.015

r =｜x−y｜



2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

τ=0.00
τ=0.30
τ=0.60
τ=0.75
τ=0.90
τ=1.05
τ=1.20

local (effective) mass from range [r, r+0.5]

Nf=8, L=36, mf=0.015

r =｜x−y｜
We fit the correlation function with r=6.5-10.



0 0.5 1 1.5 2
τ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

fit range: r = [6.5, 10]

Flow time (τ) dependence of mass (η’)

Preliminary

Small flow time : All fit results are consistent. 
Error is decreasing as τ increasing.
Large flow time:  probably over smearing 
                              and/or it may not reach mass plateau

τ



0 0.5 1 1.5 2
τ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

fit range: r = [6.5, 10]
fit range: r = [7, 10.5]
fit range: r = [8, 11.5]

Flow time (τ) dependence of mass (η’)

Result (τ＝0.75, 
fit range [6.5,10])

M⌘0 = 0.982(52)

Comparison to Mρ in Nf=8

bigger than real-life QCD

(real QCD value)

c.f. pure SU(3) [Chowdhurty et al. ’14, ],  Nf=2+1 QCD [JLQCD arxiv:1509.00944]
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Why is         large?  

One interpretation is large fermion loop (anomaly) contribution. 

Let us consider (anti-)Veneziano limit 

Aµ =
Nf�

i=1

�̄i�µ�5�i

Anomalous WT identity for axial symmetry: 

NfF 2
�M2

�� = ��µAµ · ��A�� =
�
Nf

�

4�
FF̃ · Nf

�

4�
FF̃

�

24

FIG. 5: The loop diagrams contributing to the correlation function of αGµν G̃
µν coming from the gluon loop (left panel) and

fermion loop (right panel). The large NC and NF scalings have also been specified.

At this point, we should comment on a widely spread folklore claiming that the natural scale of the technicolor would
be O(TeV) and hence the Higgs mass 125 GeV cannot be obtained without fine tuning. This is totally unjustified
statement tinted by the naive scale up of the QCD with NF = 2, NC = 3 where mF = O(650 GeV) from Eq.(96),
in sharp contrast to mF ≃ 246 GeV in our walking theory with NF = 8, NC = 4 based on the same PS formula.
Moreover, the folklore presumes the naive non-relativistic estimate Mφ ∼ 2mF which would give Mφ = O(TeV) for
NF = 2 NC = 3 in the QCD scale-up, where the PCDC does not make sense and no particular constraint on the
flavor-singlet scalar bound state (no longer a dilaton-like object), since the ordinary QCD has no scale symmetry at
all. In contrast, the approximate scale symmetry in the walking theory dictates the PCDC relation, which yields
Mφ ≃ 125 GeV ≪ 2mF , instead of the above naive non-relativistic guess.
The result in fact reflects a generic scaling law,

Mφ

vEW
∼

Mφ

Fφ
∼

1√
NCNF

→ 0 , (98)

independently of the ladder approximation, since it is a direct consequence of the the anti-Veneziano limit, NF , NC

scaling of the PCDC relation M2
φF

2
φ ∝ NFNCm4

F and of F 2
φ ∝ v2EW ∝ NFNCm2

F coming from the definition of Fφ

and vEW in terms of the dynamical mass of the technifermions. Then in the “anti-Veneziano limit” NC → ∞ with
NF /NC = fixed (≫ 1, in accord with the IR conformality near the conformal window), the TD parametrically has a
vanishing mass compared with the spontaneous scale-symmetry breaking scale Fφ (≪ ΛTC): Mφ/Fφ (≫ Mφ/ΛTC) →
0 [30, 32].
Thus the light TD with the mass of 125 GeV can be regarded as a pseudo NG boson in the anti-Veneziano limit

near the conformal window [32]: Such a light TD is in fact similar to the η′ meson in the sense that η′ is widely
accepted to be a pseudo-NG boson having a parametrically vanishing mass Mη′/Fπ = O(

√
NF /NC) < Mη′/ΛQCD =

O(
√

NF /NC) → 0 in the large NC limit with NF /NC fixed (≪ 1) in the ordinary QCD (original Veneziano limit), a

la Witten-Veneziano. In fact the anomalous chiral WT identity for A0
µ(x) =

∑NF

i=1 q̄i(x)γµγ5qi(x) reads:

NFF
2
πM

2
η′ = F .T .

〈

T
(

∂µA0
µ(x) · ∂µA0

µ(0)
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〈

T
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α

4π
GµνG̃µν(x) ·NF

α

4π
GµνG̃µν(0)

)〉

∼ N2
Fα

2 ×
[

N2
C (gluon loop ,Fig.5) +N3

CNF α
2 (fermion loop ,Fig.5)

]

. (99)

In the Veneziano limit NF /NC ≪ 1 the gluon loop dominates the fermion loop, and hence we have

M2
η′ ∼

NF

F 2
π

Λ4
QCD ∼

NF

NC
Λ2
QCD ≪ Λ2

QCD

M2
η′

F 2
π

∼
NF

N2
C

≪ 1 . (100)

Thus the TD in the anti-Veneziano limit and η′ in the Veneziano limit are resemblant.
What about the η′ in the anti-Veneziano limit, then? (No TD exists in the Veneziano limit, since it is not a walking

theory.) From Eq.(89) and Fig. 5, we see the fermion loop dominates the gluon loop, contrary to the Veneziano limit.
Then we infer

M2
η′ ∼ N3

CNF α2m2
F ∼

NF

NC
mF ≫ mF , (101)

where we have again subtracted the perturbative contribution to the U(1)A anomaly. This could be tested on the
lattice simulation [79]. In the anti-Veneziano limit the η′ mass does not go to zero and hence has no NG boson

M��

c.f. QCD-like theory : 

M2
�� �

Nf

F 2
�

� � Nf

Nc
�� 0, (Nc ��)

η’ behaves like NG-boson. [Witten, Veneziano]

Nf

Nc
< 1 & Nc ��



Fermion loop dominates.

1/Nc is not a good approximation. 
Flavor singlet pseudo scalar (η’) could be heavier than other 
hadrons.
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FIG. 5: The loop diagrams contributing to the correlation function of αGµν G̃
µν coming from the gluon loop (left panel) and

fermion loop (right panel). The large NC and NF scalings have also been specified.
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vanishing mass compared with the spontaneous scale-symmetry breaking scale Fφ (≪ ΛTC): Mφ/Fφ (≫ Mφ/ΛTC) →
0 [30, 32].
Thus the light TD with the mass of 125 GeV can be regarded as a pseudo NG boson in the anti-Veneziano limit
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Thus the TD in the anti-Veneziano limit and η′ in the Veneziano limit are resemblant.
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where we have again subtracted the perturbative contribution to the U(1)A anomaly. This could be tested on the
lattice simulation [79]. In the anti-Veneziano limit the η′ mass does not go to zero and hence has no NG boson

Anti-Veneziano limit of Many-flavor QCD : 
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Ref: [Matsuzaki and Yamasaki, arXiv:1508.07688]



c.f. Flavor singlet scalar in large Nc & Nf

(ladder SD equation)

Scalar can be parametrically small,  
and behaves like NG-boson (dilaton) in the Nc limit.

Ref: [Matsuzaki and Yamasaki, arXiv:1508.07688]

Dµ : dilatation current
Partially conserved dilatation current relation (PCDC): 

(trace anomaly relation) 
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> 1 is necessary to have approximate scale invariance.



Nf=8 QCD is a viable candidate of walking gauge theory.

Flavor singlet (disconnected) spectrum 
•Flavor singlet scalar is as light as pion.  
•It is different from real-life QCD. 
•Flavor singlet scalar could be a candidate of the pseudo-dilator, 
which is the composite Higgs boson in technicolor model. 

•Flavor singlet pseudo-scalar (η’) mass can be obtained using gluonic 
operator. (We need to study more for systematic uncertainties) 
•Our preliminary result of Mη’/Mρ in Nf=8 is larger than real-life 
QCD. (enhancement of anomaly effect in large Nf?)                                       
c.f. Witten-Veneziano formula  

•In the technibaryon dark matter scenario, we estimate cross section 
for direct detection. According to DM direct detection experiment, 
our values are excluded so that it may be difficult to explain the 
existence of DM as a techni-baryon.



END  
Thank you 


